1 (i)

Fig. 12

Fig. 12 shows part of the curve $y = x^4$ and the line y = 8x, which intersect at the origin and the point P.

- (A) Find the coordinates of P, and show that the area of triangle OPQ is 16 square units. [3]
- (*B*) Find the area of the region bounded by the line and the curve. [3]
- (ii) You are given that $f(x) = x^4$.
 - (A) Complete this identity for f(x+h).

$$f(x+h) = (x+h)^4 = x^4 + 4x^3h + \dots$$
 [2]

(B) Simplify
$$\frac{f(x+h) - f(x)}{h}$$
. [2]

(C) Find
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
. [1]

(D) State what this limit represents. [1]

Fig. 4 shows a curve which passes through the points shown in the following table.

x	1	1.5	2	2.5	3	3.5	4
У	8.2	6.4	5.5	5.0	4.7	4.4	4.2

Use the trapezium rule with 6 strips to estimate the area of the region bounded by the curve, the lines x = 1 and x = 4, and the x-axis.

State, with a reason, whether the trapezium rule gives an overestimate or an underestimate of the area of this region. [5]

3 (i) A tunnel is 100 m long. Its cross-section, shown in Fig. 9.1, is modelled by the curve.

$$y = \frac{1}{4}(10x - x^2),$$

where x and y are horizontal and vertical distances in metres.

Figure 9.1

Using this model,

- (A) find the greatest height of the tunnel, [2]
- (B) explain why $100 \int_{0}^{10} y \, dx$ gives the volume, in cubic metres, of earth removed to make the tunnel. Calculate this volume. [5]
- (ii) The roof of the tunnel is re-shaped to allow for larger vehicles. Fig. 9.2 shows the new crosssection.

Fig. 9.2

Use the trapezium rule with 5 strips to estimate the new cross-sectional area.

Hence estimate the volume of earth removed when the tunnel is re-shaped.